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The cohesion of solid magnesium and calcium
oxide: the role of in-crystal modification of the
oxide ion and electron correlation

By N. C. PYPER
University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, UK
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The cohesive properties of solid MgO and CaO are investigated using the fully ionic
description calculating exactly, after generating the electronic wavefunctions of the
ions, those portions of each inter-ionic potential energy function that do not arise
from electron correlation. Three major new refinements are introduced. The modi-
fications of each anion wavefunction that arise from the crystalline environment are
described using two new methods in which the environmentally generated contri-
bution to the potential energy acting on an anion electron is related to the cation
electron density. These methods improve substantially on earlier models, shown to
be inadequate for solid oxides, in which the environmental potential energy has the
form of that generated by a spherical shell of charge. Density functional theory is
used to evaluate the contribution of electron correlation to the oxide-ion rearrange-
ment energy, that is the energy required to convert a free O~ ion to an in-crystal O?~
ion. For any oxide, this correlation term varies appreciably with crystal geometry,
as well as differing significantly between different oxides at their equilibrium geome-
tries. The present models for the in-crystal environment of the oxide ion require a
new way of deriving the parameters that govern the damping of the dispersive at-
tractions between the ions, this damping originating from ion-wavefunction overlap
being too large to neglect.

The lattice energies, closest equilibrium cation—anion separations and bulk com-
pressibilities, predicted for both MgO and CaO using all of the improvements pre-
sented here, agree very well with experiment. There is no evidence for any significant
covalent, contribution to the cohesion of these two oxides.
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There are many reasons (Catlow et al. 1977; Pyper 1986, 1991) for non-empirically
studying the electronic structures and properties of polar solids. Oxides are scientifi-
cally and technologically important; CeOz, ZrO,MgO, and CaO being ceramics (De
Vita et al. 1992; Mackrodt & Woodrow 1986; Butler et al. 1983). The two latter are
also of geophysical interest as major constituents of the mantle of the Earth (Stacey
1969; Cohen & Gordon 1976; Hemley et al. 1985; Jackson & Gordon 1988; Wolf &
Bukowinski 1988); ThO, is a nuclear material (Colbourn & Mackrodt 1983), while
UO, and PuO; are reactor fuels (Catlow 1977; Catlow & Pyper 1979).

The recent extensions of standard electronic band-structure computations to the
calculation of cohesive energies, inter-atomic spacings and elastic properties have
been reviewed (Srivastava & Weaire 1987). Although these calculations have the
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90 N. C. Pyper

advantage of avoiding any assumptions concerning ionicity, this is offset by the re-
sulting complexity necessitating the use of various approximations, particularly the
local density-functional description of both exchange and correlation. However, a
local correlation approximation cannot yield the full dispersive attraction between
the ions because this is still appreciable at large separations where the overlap of
their electron densities is negligible. Since dispersion contributes significantly (Pyper
1986) to the cohesion of many polar solids, the local correlation approximation needs
refinement. Problems in calculations using pseudo-potentials, local exchange and cor-
relation are revealed by the underestimation (3.94 au (De Vita et al. 1992)) of the
MgO cation—anion separation (3.974 au at 0 K (Touloukian et al. 1977)); this would
be accentuated on accurately including the dispersion energy.

The crystal Hartree-Fock method (Harris & Monkhorst 1969, 1971; Euwema et al.
1973) avoids the uncertainties of pseudo-potentials or local exchange while making
no ionicity assumptions. However, its prediction for the lattice energy of LiF of
1076 kJ mol™! (Euwema et al. 1974) is larger than the experimental 1036 kJ mol~!
(Weast 1979) despite the absence of correlation which would increase the discrepancy.
There is also evidence (Pyper 1991) that it overestimates the prediction (Causa
et al. 1986, 1987) for the MgO lattice energy derived without including electron
correlation. The evaluation of the correlation energy as an expectation value of a
functional (Causa et al. 1987) fails to describe the dispersive attractions between
ions of negligibly overlapping electron densities. However, despite this failure, the
crystal Hartree-Fock-plus-correlation prediction (Causa et al. 1987) of 3074 kJ mol !
for the lattice energy of MgO is greater than the experimental 3038 kJ mol~! (Cohen
& Gordon 1976). Although analysis of the electron density (Causa et al. 1986) shows
MgO to be essentially fully ionic, the contribution to the binding energy predicted
(Causa et al. 1987) from the correlation energy functional is significantly less than
that reliably derived (Pyper 1986, 1991) assuming full ionicity. These discrepancies
all show that the crystal Hartree—Fock approach is not free from difficulty.

There is good evidence that many solids are essentially fully ionic with oxides
containing the doubly charged O?~ ion. X-ray crystallographic electron-density de-
terminations (Hosoya 1969; Linkoaho 1969; Castman et al. 1971) show full ionicity
in alkali halides, which is also indicated for MgO and CaO by analysis (Redinger &
Schwarz 1981) of the electron densities resulting from local density-functional band-
structure computations in agreement with a similar study (Causa et al. 1986) of
the crystal Hartree-Fock wavefunction for MgO. The magnetic properties of UO,
indicate a uranium 52 configuration (Dawson & Lister 1952), while analysis of the
experimental phonon dispersion curves, treating the uranium charge as an adjustable
parameter, predicts this to be four (Dolling et al. 1965). The fully ionic model not
only affords a transparent breakdown of the cohesive energy into pair potentials and
the rearrangement energies needed to convert an isolated ion into its in-crystal state,
but also straightforwardly incorporates the inter-ionic dispersive attractions while
avoiding many uncertainties of computations not assuming full ionicity.

An advantage of fully ionic models is the ability to compute exactly, given wave-
functions for the individual ions, the major portions of each inter-ionic potential,
namely those not arising from electron correlation. Their common evaluation by
density-functional theory (Lenz 1932; Jensen 1932, 1936; Massey & Sida 1955; Gor-
don & Kim 1972; Kim & Gordon 1974; Wedepohl 1977; Cohen & Gordon 1975, 1976;
Muhlhausen & Gordon 1981; Hemley et al. 1985; Jackson & Gordon 1988; Wolf &
Bukowinski 1988) loses this advantage, there being evidence (Wood & Pyper 1981a;
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Pyper 1986) that even improved methods (Rae 1973, 1975; Lloyd & Pugh 1977,
Waldman & Gordon 1979a, b; Cohen & Gordon 1976; Muhlhausen & Gordon 1981)
can contain appreciable errors. The more occasional density-functional evaluation
(Boyer et al. 1985; Mehl et al. 1986) of the entire rearrangement energy of oxides
is quite unsatisfactory, introducing errors comparable with the lattice energy. Other
early approximate non-empirical calculations (Hylleraas 1930; Landshoff 1936, 1937;
Loéwdin 1950, 1956; Froman & Lowdin 1962; Mansikka & Bystrand 1966; Vallin et al.
1967; Petterson et al. 1967, 1968; Calais et al. 1967, 1971; Haynes & Calais 1973) not
based on density-functional theory contained inaccuracies reviewed elsewhere (Pyper
1986, 1991). Although the non-correlated terms were subsequently computed exactly
(Abarenkov & Antonova 1970; Andzelm & Piela 1977, 1978; Wood & Pyper 1981b),
none of these calculations simultaneously included two other important effects.
Satisfactory calculations must consider damping of the inter-ionic dispersive at-
tractions from their standard multipolar form in the presence of non-negligible ion-
wavefunction overlap. Furthermore, the interaction between anion electrons and the
environment must be described by a model potential which is physically realistic in
reducing to the interaction generated by a point-charge lattice where the electron
density of other ions is negligible but which includes, in regions of non-negligible
cation electron density, a repulsion dependent on cation and crystal geometry. Al-
though the simple radius variable Madelung-Watson (RvMW) model contains these
features and satisfactorily describes the fluorides and chlorides considered (Pyper
1986), the greater environmental sensitivity of the O?~ ion may need a more sophis-
ticated model. Furthermore, electron correlation contributes significantly to the large
rearrangement energy needed to convert a free O~ ion into an in-crystal 0%~ ion.
However, taking this contribution as constant (Cohen & Gordon 1976; Abarenkov &
Antonova 1979b; Mulhausen & Gordon 1981; Pyper 1986), equal to the value deduced
(Clementi & McLean 1964) by extrapolation along the neon isoelectronic sequence,
may be inadequate in neglecting any dependence on cation and crystal geometry.
This paper presents the three refinements of previous theory (Pyper 1986) needed
to describe oxides, namely an improved model of the crystalline environment, in-
clusion of the dependence on both cation and crystal spacing of the correlation
contribution to the O?~ rearrangement energy and the modification of the disper-
sion damping needed with the improved environmental model. These refinements are
tested on MgO and CaO and shown to rectify the slightly less good description of
MgO compared with the halides shown by the previous calculations (Pyper 1986).

2. Basic theory

(a) Overview

For uniform expansions or contractions from the equilibrium six-coordinated cubic
structure, the spatial positions of all the nuclei in an MgO or CaO crystal, that is the
crystal geometry, is uniquely defined by the spacing R between any cation and its six
closest anion neighbours. The binding energy U (R) is defined as the heat change on
forming one mole of the crystal from free cations, free singly charged (O~) ions and
free electrons, the observed R value, R., being that minimizing U, (R). This definition
ensures that the lattice energy (D.), the heat required to convert the crystal with R
value R, into these dissociation products and equal to —Up(R,), can be derived from
experiment using a Born-Haber cycle (Cohen & Gordon 1976). The energy needed to
convert the crystal into free cations and O2?~ ions is not experimentally measurable
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because a free 0%~ ion is unstable with respect to decomposition to an O~ ion and a
free electron. For crystals such as MgO and CaO having the rock-salt structure, the
bulk compressibility, denoted B, can be computed from Uy (R) through the result
(7) of Pyper (1991) with the constant k, equal to two.

The basic assumption of the present study is that solid MgO and CaO are fully
ionic containing doubly charged alkaline earth cations and doubly charged oxide
ions (O%7). This is expressed quantitatively (Abarenkov & Antonova 1970; Pyper
1986, 1991) by writing the wavefunction for all the electrons in the crystal as an
antisymmetrized product of the wavefunctions of the individual ions, each of which
is taken to be spherically symmetric. Although this procedure neglects the correlation
of the motions of electrons on different ions (the inter-ionic electron correlation), the
correlation of the motions of electrons belonging to the same ion (the intra-ionic
electron correlation) can be included by using a multi-determinantal description for
each of the individual ion wavefunctions. A perturbation-theory treatment of the
inter-ionic electron correlation then yields the final result for UL (R).

(b) Formulation exclusive of electron correlation

In the approximation, denoted by a 0 superscript, in which electron correlation
is entirely neglected, the crystal binding energy U?(R), is derived by writing the
crystal wavefunction as an antisymmetrized product of Hartree-Fock, or, in a rela-
tivistic theory, Dirac-Fock, wavefunctions for the individual ions and then taking the
expectation value of the the total electronic Hamiltonian of the crystal. This yields,
as discussed elsewhere (Abarenkov & Antonova 1970; Pyper 1986, 1991),

UD(R) = N;{E%(R) — 6.990 25824/ R + 6[Vp (R) + VAA(V2R) + Vi (V2R)]}.
(2.1)
Here all the terms inside the braces are expressed in atomic units on a scale where
electrons and nuclei have zero energy if stationary and isolated. The constant Ny,
equal to 2625.5, converts an energy per ion in atomic units into an energy per mole
of crystal.

The quantity EY,(R) is the Hartree or Dirac-Fock prediction for the rearrangement
energy required to convert one free singly charged O~ ion into an O?~ ion having
the wavefunction considered appropriate for describing the crystal having closest
cation—anion separation R. Thus,

E%(R) = E(R) ~ EY.. (2.2)

Here, EQ_ is the Hartree-Fock or Dirac-Fock prediction for the energy of a free O~
ion and E9(R) is the energy of an O?~ ion computed in the orbital approximation
using the free-ion Hamiltonian, but with the wavefunction considered appropriate
for the ion in the crystal. The environment of an O?~ depends not only on R but
also on the counter cation and, hence, ES(R) and EY(R) depend on both these
variables. There is abundant evidence that light highly charged cations such as Mg?*
and Ca®" are essentially unaffected by their environment in the crystal, having the
same polarizabilities (Fowler & Madden 1984, 1985; Fowler & Pyper 1985), electron
densities and, hence, inter-ionic potentials (Pyper 1986) as the free cations. The
cations will therefore be taken to remain unchanged from their free state and, hence,
there is no cation rearrangement energy in (2.1).

In the absence of overlap between the wavefunctions of the ions, the interaction
between every pair of ions would have the purely coulombic form g,qy /(. R), where
ga is the net charge of ion a, equal to —2 for an oxide ion, and z,, is a purely
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In-crystal modification of the oxide ion and electron correlation 93

geometrical constant which yields the separation of the pair of ions a and b as z,, R.
The sum of all such purely coulombic interactions enters (2.1) as the Madelung
term —6.990258 24/ R. If the overlap between the wavefunctions of two ions is not
negligible, the purely coulombic interaction is augmented by a correction V.2, (x., R),
of short range as denoted by the s subscript, given by

Vs?zb(gcabR) = Vaob(xabR) — @alb/(TabR). (2.3)

Here, V3 (z.,R) is the total interaction energy of the pair of ions a and b separated
by a distance x,,R and measured relative to the sum (E?(R) + E2(R)) of the ener-
gies that the two ions would have if each retained its in-crystal wavefunction while
not interacting. For MgO and CaO, the only non-negligible short-range interactions
are those (V%4 (R)) between a cation and its six nearest anions, those V9 1 (1/2R)
between an anion and its closest anion neighbours at a distance /2R and the cor-
responding cation terms V%,(y/2R). The recently reviewed (Pyper 1991) evidence
suggests that the only terms neglected in deriving (2.1), three-body and higher-order
multibody terms are only a very minor portion of UY(R) although they may make
an important contribution to some of the elastic constants.

The in-crystal O?~ ion wavefunctions determining the rearrangement energy and
short-range inter-ionic interactions are generated using the Oxford atomic Dirac—
Fock program (Grant et al. 1980) adding to the term describing the potential energy
acting on each electron a representation of the interaction between this electron
and the environment generated by all the other ions in the crystal, including their
attendant electrons. The development, described in §3, of significantly more accu-
rate representations of this potential energy, constitutes the first of the three major
refinements of the computations of crystal cohesion to be presented in this paper.

Dirac-Fock wavefunctions for the free cations and in-crystal O?~ ions were input
to the relativistic integrals program (rip) (Wood & Pyper 1981b, ¢, 1986) to yield
interaction energies V9 (z.,R) and, hence, the short-range terms V2, (x.,R), which
are exact once the wavefunctions of the interacting ions have been specified. This
avoids the uncertainties that would arise if these interactions were computed using
density-functional theory. Although relativistic effects would be expected to be very
small for MgO and CaO, the rIP computations take full account of relativity by using
four-component wavefunctions for the individual orbitals and a relativistic Hamil-
tonian containing the Dirac kinetic energy operator. Non-relativistic computations
with the Oxford Dirac-Fock and RiP programs differ from their relativistic counter-
parts solely by using an artificially large value for the velocity of light and thus offer
no economies.

(¢) Crystal cohesion including electron correlation
(i) The total crystal cohesion

The discussions (Pyper 1986, 1991) of the derivation of Uy (R), including the con-
tributions from electron correlation, suggested that three- and higher-order multi-
body terms are small. After neglecting both these terms and a very small effect of
intra-ionic electron correlation, one finds

UL(R) = Ni{E.(R) — 6.99025824/R
+6[Vica(R) + Vaa (V2R) + Vieo(V2R)} + Udisp(R). (2.4)

Here, E..(R) is the total rearrangement energy which differs from EZ (R) by contain-
ing a term ES™(R) originating from intra-ionic electron correlation and evaluated
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through (2.8). Thus,
Eo(R) = Epo(R) + E™ (R). (2.5)
The perturbation treatment of inter-ionic electron correlation yields two correc-
tions to V3 (zap R), a term VT (24, R) discussed in § 2 ¢ (iii) and the dispersive attrac-

sab
tion. The first term is conveniently incorporated into Uy (R) through the definition

V};b(mabR) = Vs?lb(xabR) + Vb (zabR), (2.6)

S

while the pairwise sum of all the dispersions yields the total crystal dispersion energy
Udisp(R).

(ii) The intra-ionic electron correlation contribution

Electron correlation lowers both the energy EQ_ of the free O~ ion as well as that
EA(R) of the O?~ ion by contributions, denoted ES™ and E{" (R), respectively, so
that

Eo- = E3_ + EX™, Ea(R) = ER(R) + EX™(R). (2.7)
Here E5(R), which is the analogue of that EQ(R) in the treatment in which correla-
tion is neglected, is the expectation value of the Hamiltonian for an isolated 02~ ion
computed using the correlated wavefunction for the in-crystal ion. The term E™(R)
is given by
B2 (R) = BY™(R) - BS™, (28)
and is therefore known after evaluating both the correlation energies in (2.7).

It is now well established (Cohen & Gordon 1976; Abarenkov & Antonova 1979b;
Muhlhausen & Gordon 1981; Pyper 1986) that F&™ (R) is an important contributor
to oxide lattice energies. Hitherto it has been calculated using for the O~ ion corre-
lation energy E™(R) a value derived (Clementi & McLean 1964) by extrapolating
experimental data on ions which, unlike O?~, are stable in the free state. However,
this approach can be questioned not only because it neglects the R dependence of the
wavefunction of the in-crystal O~ ion which must make ES™(R) vary with R, but
also because it is not clear that the correlation energy of an O?~ ion in a crystal is
the same as that deduced for a hypothetical free O?~ ion. These questions motivate
the development of the second of the three major refinements of the computations
of crystal cohesion to be presented in this paper, namely a method for computing
E(R) including its R dependence.

(iii) The inter-ionic electron correlation contributions

The first, V23" (zanR), of the two contributions of inter-ionic electron correla-
tion to the interaction between a pair of ions arises from the exchange of electrons
between them. It is therefore of short range, depending on the overlap of the wave-
functions of the two ions, and vanishes for sufficiently large distances x,, R, where
this overlap is negligible (Boehm & Yaris 1971). The only non-negligible interactions
are those (V.S¥ (R)) between a cation and its six nearest anions, those V.35 (v/2R)
between an anion and its closest anion neighbours and the corresponding cation
terms VS (v/2R). These terms are too complicated to calculate exactly and were
evaluated as already discussed (Wood & Pyper 1981a; Pyper 1990, 1991) from the
Dirac-Fock electron densities of the free cations and in-crystal O%~ ions by using a
density-functional theory (Gordon & Kim 1972) based on electron correlation in a
uniform electron gas.

The second contribution of inter-ionic correlation to the interaction energy of a
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pair of ions does not involve the exchange of electrons between them and, therefore,
does not vanish for large separations at which the overlaps between the ion wave-
functions are negligible. This long-range term is the dispersive or Van der Waals
attraction between the two ions (Kreek & Meath 1969; Boehm & Yaris 1971). For
large separations (z,,R) at which the overlap of the wavefunction of ion a with that
of ion b is negligible, this attraction can be expanded into the familiar multipole
series whose leading term is the dipole-dipole interaction —Cg(ab)/[(xabR)®] (Kreek
& Meath 1969). For separations (z,,R) sufficiently small that overlap between the
ion wavefunctions is not negligible, each term in the multipole series is multiplied
by a damping function (Jacobi & Csanak 1975; Koide 1976; Pyper 1986). For ion
wavefunctions generated using the RvMw model for the crystalline environment, the
appropriate damping functions describe well the dispersive attractions in solid ionic
halides (Pyper 1986). Ion wavefunctions computed using the improved models for the
crystalline environment developed here require slightly different damping functions;
the derivation of which constitutes the third of the three major refinements of the
computation of crystal cohesion to be presented in this paper.

3. The environmental potential

(a) Ezact analysis

An anion in a crystal with geometry specified by R differs from the corresponding
isolated ion because an anion electron at a position r, relative to the anion nu-
cleus experiences a potential energy, called the environmental potential and denoted
Fenv(ra; R), generated by the nuclei and electrons of all the other ions. This potential
has three contributions (Mahan 1980; Pyper 1986, 1991), the first being that gen-
erated when all the other ions b (# a) are replaced by point charges of size gy, the
second and third being the corrections to this point-lattice description which arise
from the spatial extensions of the charge distributions of the ions b. These corrections
are of short range, being non-zero only where neighbouring ions have non-negligible
electron densities. The third contribution is, in principle, non-local since it arises
from exchange with electrons on neighbouring ions. Since no systematic study of
the reliability of even local approximations in lattice-energy calculations has been
presented hitherto, non-local descriptions will not be considered.

Any local potential Fen,(r,; R) can be expanded into a series of the type

Fenv(ra; R) F((egv Ta’ + Z Fenv(ra’ (31)

The first term depends only on the radial distance 7, of the electron from nucleus a,
the angular variation of F en\)r(ra,R) being that of a rank L spherical harmonic cen-
tred on the a nucleus. This paper uses the conventional description of a closed-shell
ion, where all the orbitals have the standard central-field form and are either com-
pletely filled with electrons or entirely empty. Only the spherically symmetric term
Fenv(ra, R) is added to the potential energy in the Fock Hamiltonian when comput-
ing the in-crystal O?~ wavefunctions because the remainder of (3.1) contributes zero
to the total energy of the ion a (Pyper 1986). This approach is self-consistent in that
it still generates central-field orbitals; there being no evidence that this introduces
any shortcomings. Furthermore, for a cubic lattice, retention of only anv(ra, R) in
(3.1) is a good approximation because parity eliminates all terms of odd L while the
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L = 2 terms also vanish leaving, as the leading correction, the L = 4 terms whose
effect on an s or p orbital would be expected to be small.

In the first of the two broad groups of environmental models considered here,
the short-range contributions to F énl(ra; R) are modelled separately from the
point-lattice term. The second group, in which Fég)v(ra;R) is described by a sin-
gle function, has two subdivisions depending on whether Fér?‘),(ra; R) has the form of
a potential generated by a shell of positive charge.

(b) Separate modelling of the point-lattice and short-range terms
(i) The point-lattice environmental potential

The contribution to Fg?v(ra;R) arising from a point-charge lattice is constant
(= —@env/R) from r, = 0 to r, = R (Mahan 1980; Pyper 1990, 1991), with ¢en,
equal to 3.495129 for rock-salt structure oxides. It rises at larger r, to reach zero
around r, = /2R after which there occur several smaller oscillations associated with
distances between the anion a and other ions greater than y/2R. Such an environmen-
tal potential contracts anions reducing both their polarizabilities (Fowler & Madden
1983, 1984, 1985) and short-range interactions V.3, (R) with cations (Pyper 1986).

The derivative with respect to r, of the point-lattice environmental potential is
discontinuous where 7, equals an anion-ion distance. Since, in the Oxford Dirac—
Fock program, the radial wavefunctions are tabulated numerically, the grid must be
sufficiently dense for r, in the vicinity of R where the point-lattice approximation to
F E;(r)l)v(ra; R) is varying most rapidly. The MgO binding energies computed with four
different grids were not grossly inaccurate with discrepancies (in au) in EC (3.981),
V24 (3.981) and V9 ,(3.981,/2) in the fourth decimal combining to produce uncer-
tainties in UY(3.981) in the third. However, such an error is only marginally accept-
able.

The second and third contributions to Fu,,(r,; R) cause the entire Fé?ll,(ra; R) to
differ greatly from the point-lattice term where the electron density of neighbouring
ions is appreciable. Hence, there is no need to model the gradient discontinuities in
the exact point-lattice contribution, thus justifying the Madelung Fermi smoothed
(Mrs) function Fyps(ra; R) as a model for the latter

FMFS(Ta; R) = —(¢env/R){1 + exp[g(’ra - TO)]}_l' (32)

The centre ry is chosen such that (3.2) reproduces the point-lattice result where
the latter equals —¢eny/(2R) while g is fixed by requiring that (3.2) reproduces the
point-lattice expression half way between R and ry, at r, = R+ (ro — R)/2. For a
rock-salt lattice, the resulting values rq = 1.17045R and g = 11.6921/R ensure that
(3.2) accurately reproduces the point-lattice result (—gen/R) for small r,, where
cation electron density is negligible. The evidence to be discussed shows that the
numerical problems encountered with the exact point-lattice potential arise from the
gradient discontinuities.

(ii) Short-range contributions to the environmental potential

The second contribution to Fun,(r,; R) is the correction arising when the purely
electrostatic potential generated by the electrons on each ion b (b # a) is calculated
taking account of the spatial extension of their charge distributions. This contribution
introduces into F E?ﬂ,(ra, R) a deep attractive well around the nuclei of these cation
neighbours (Pyper 1986, 1990, 1991) which acts to expand the anion. The most
dominant of several effects in the third contribution to Feny (745 R) (Pyper 1986, 1991)
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is a repulsion originating from the Pauli principle which forces the wavefunction of
ion a to be orthogonal to the occupied orbitals of ion b, thereby introducing an
extra node into the orbitals of ion a increasing their kinetic energies. This third
contribution thus acts to contract the anion in opposition to the second. It would
be ill-advised to try to model the sum of these two terms by calculating the second
exactly while introducing local approximations to the third. Since the latter term far
more than outweighs the former to produce orbitals cons1derably more contracted
than those predicted using only the point-lattice term, Fem,(ra, R) is written as the
sum of the MFs function plus a model for the repulsion generated as the sum of the
second and third contributions.

The electron density of each closest cation neighbour decreases exponentially at
large distances from the cation nucleus, which is located at a distance R from the
anion, thus justifying the ‘optimized hyperbolic secant Madelung Fermi smoothed’
model potential Fousmrs(7a; R)

FOHSMFS("'a; R) = FMFS(Ta; R) + Asech[k(ra — R)] (33)

The model Asech[k(r, — R)] for the sum of the second and third contributions to
F9, (ra; R) reaches its maximum value of A at r, = R, corresponding to the position
of the cation nuclei and decreases exponentially at large r,. The variation principle
shows that the better the approximation to the wavefunction of the entire crystal, the
lower is the predicted value of its total energy. This shows that, in the approach where
electron correlation is neglected, improving the description of the in-crystal O?~ ion
will predict a more negative cohesive energy U?(R) because the Dirac—Fock energies
of a free cation and free O~ ion are independent of the crystalline environment. Thus,
for any R, the best values for A and k are those minimizing U?(R). Such parameters
could, in principle, be optimized by minimizing the total crystal energy predicted
including the contributions from electron correlation. However, this procedure is
very dubious if the correlation contribution is not calculated exactly from a trial
wavefunction but is derived approximately using density-functional theory. Hence,
in this paper, the minimization of UY(R) is used as the criterion for optimizing
parameters in environmental potentials. The continuity of (3.3) and its derivatives
explains why the results are free from the difficulties encountered using the exact
point-lattice potential. Thus, the results derived using (3.3) are accurate to at least
four decimal places (in au), corresponding to uncertainties of just a few tenths of
kJ mol~!, which is more than acceptable.

Another model for the sum of the second and third contributions to Fenv(ra, R)
is based on Phillips-Kleinman pseudo-potential theory (Phillips & Kleinman 1959).
The effects on a valence orbital of energy e, (< 0) which arise from its orthogonality
to other filled orbitals ¢;(r) of energies ¢; are described by adding a potential Fpk
to the Fock operator for the valence electron without demanding that the valence
orbital is orthogonal to the orbitals ¢;(r). The potential Fpk is defined as a sum over
the filled orbitals by

Foi = — ) (&0 — &)|¢i(r)) (@i (r)]. (34)
In relativistic theory, ¢;(r) is a column vector of four rows (Sakurai 1967) having a

four-column row-vector adjoint ¢; (r) (= (¢;(r)|), the non-local potential (3.4) de-
pending quadratically on the ¢;(r). The ‘optimized with eigenvalues Madelung Fermi
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smoothed’ (OEMFS) potential Fogryrs(ra; R) results by replacing these quadratic
terms by the local approximations ¢; (r)¢;(r) = p;(r):

Formrs(ra; B) = Furs(ra; R) — A Z > (e — e0){lpi(ry)F}. (3.5)

ieb

The sum over b is over the six cations adjacent to anion a while the sum over i is
over all the orbitals containing an electron in the ion b, the position 7, being mea-
sured relative to the b nucleus. The superscript (0) in (3.5) denotes the spherically
symmetric term in the series of the type (3.1) that results when [p;(r)]* is expanded
about the nucleus of the anion a. The generation of {[p;(r,)]*}(®) uses techniques
in the RIP program already described (Wood & Pyper 1986). Since the same Fock
operator must be used for all the anion orbitals to ensure that these are orthogonal,

gy in (3.4) is replaced in (3.5) by an average £o. This was taken to be the energy of
a stationary electron subject to just the constant portion —(@eny/R) of FY, (ra, R).

If Phillips-Kleinman theory was exact, and only negligible errors were introduced
by approximating (3.4) as (3.5), the variational parameters A and k, introduced for
greater flexibility, would be unity when optimized by minimizing U?(R). Since the
spacings between points on the grid used to define the Dirac-Fock atomic orbitals
increase with increasing distance, a contracted cation orbital is appreciable at only a
small number of points when expanded about the anion. Possible numerical inaccu-
racies were avoided by omitting all orbitals with mean radius less than 0.3 au from
the 4 sum in (3.5). This only introduces insignificant errors because compression of
anion orbitals arises almost entirely from overlap with the outermost cation orbitals.
These calculations are as numerically accurate as those performed using the oDMFS
model, which is described next.

The major factor rendering the sum of the second and third contributions to
F em,(ra,R) repulsive is the increase in the kinetic energy of an anion electron in
spatial regions of appreciable cation electron density. In the density-functional theory
of electronic structure, the total kinetic energy of a species S is expressed as the
integral over all space of the product of the local total electron density prs(r) of
the system S at position r multiplied by a kinetic-energy functional (Hohenberg
& Kohn 1964). For an electron density varying slowly in space, this functional can
be taken to equal at each 7 the value (= 2(37%)%/3[p(r)]?/3) for a non-relativistic
infinite electron gas having a uniform density equal to that of the system at that
point in space (March et al. 1967). This shows that if an anion electron has a small
probability A(r) of entering a region of space where the total electron density of
the cation is prc(r), a contribution of (372)%2[prc(r) + A(r)]*/3 to the kinetic
energy is generated compared with one of % (372)%/3[prc(r)]*/? for vanishing A(r).
After expressing [prc(r) + A(r)]*/? in the form [prc(r)]®*[1 + (A(r)/prc(r))]?/?
and making a Taylor expansion to lowest order in the small quantity A(r)/prc(r),
the kinetic energy is seen to increase by 1(372)%/3[ppc(r)]?2A(r). This suggests
adding the term (372)%3[prc(r)]*? to the potential energy in the anion Dirac—
Fock equations to describe the effects of overlap with filled cation orbitals. This
justifies introducing for FOuv(r,; R) the ‘optimized with density Madelung Fermi
smoothed’ (ODMFS) model Fopmrs(ra; R)

Fopmrs(Ta; R) = Furs(ra; R +AZ{ pro ()], (3.6)

where the b sum is over the six cations closest to anion a and pr,(rp) is the total
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electron density of ion b. This density is spherically symmetric about its nucleus
and given in Dirac-Fock theory as the sum of the densities p;(r,) of the orbitals
occupied on ion b. The superscript (0) in (3.6) denotes the term which is spherically
symmetric with respect to the nucleus of ion a in the series of the form (3.1) generated
by expanding pr,(7) about the a nucleus. The parameters A and k are optimized by
minimizing U} (R); the results would be 4.785 and 2 if (3.6) described Fl= (r,; R)
exactly. Contracted cation orbitals having mean radii less than 0.3 au were omitted
from the opMFS potential for the same reasons that they were not included in the
OEMFS function. Tests show that calculations using (3.6) are as accurate as those
using the OHSMFs method, even though generation of the ODMFS potential requires
an expansion of the type (3.1) absent from (3.2).

(¢) Single-function models of the environmental potential
(i) General models

The Abarenkov & Antonova (1979a) (0AA) model Foaa (7a; R) for the entire spher-
ically symmetric part of the environmental potential is

Foaa(Ta; R) = {~¢env/R}{1 — [1 — exp(—Ar,)]*}, (3.7)

where A and k are variational parameters. The justification of this model is that
it reduces to the point-lattice result {—¢en,/R} at small r, but rises to zero for r,
significantly greater than A~

The optimized Fermi function (OFFM) model Foprm(ra; R) defined by

FOFFM(ra; R) = *{¢env/R}{1 + éxp[A(Ta - rk)]}_lv (38)

with A and 7, chosen variationally, is also suggested by the above argument. Al-
though (3.8) becomes identical with the FMs model (3.2) of the point-lattice poten-
tial when A = g and 7 = ro, the two functions are physically distinct because (3.2)
is a model for just the potential generated by a point-charge lattice, whereas (3.8)
is a model for the entire function Fé%(ra; R). It is clear that, with the appropriate
choice of parameters, the 0AA and OFFM models are rather similar.

(ii) Models having the form of a potential generated by a shell of charge

The reasoning behind the introduction of the 0AA and OFFM models also suggests
(Pyper 1986) the RvMW Frymw (7a; R) model for FQ, (ra; R):

FRVMW(ra; R) = _kenv/RW, for r, < R, (390')
Fryvmw (Ta; R) = —keny/Ta, for ra > Ry, (3.9b)
where kenv/BRw = Penv/R. (3.10)

This definition of ke, ensures that, for r, < Rw, the RvMw function reproduces
the potential generated by the point-charge lattice with spacing R (> Rw). The
form (3.9b) is introduced because, in spatial regions where the electron density of
neighbouring cations is non-negligible, an anion electron will experience a repulsive
potential acting to reduce the constant stabilization of the point lattice. It is thus
reasonable to take Rw, the maximum distance r, from the anion nucleus at which
the spherical average of the electron density of neighbouring species is still negli-
gible, to be R — R, where Rg is either the cation radius or some closely related
combination of cation properties. This model acceptably describes (Pyper 1986) en-
vironmentally induced modifications of inter-ionic potentials involving halide ions,
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as well as performing not unreasonably for MgO. The previous value R¢c = 1.285 au
is used for MgO (Pyper 1986), while for CaO, R¢ is taken to be 1.871 au, the ionic
radius (0.99 A) of Ca?* (Johnson 1968). The ‘optimized radius variable Madelung
Watson’ (orRvMW) model differs from the RvMw model in determining Ryw varia-
tionally. Numerical errors in using both these models are slightly greater than those
arising with the oHSMFSs or OEMFS models, but are less than those occurring with the
exact point-charge-lattice potential. This almost certainly occurs because the RvMW
model has only one gradient discontinuity compared with none in the oHsmFs and
OEMFS models and several in the exact point-lattice potential.

The rvMw and ORVMW potentials are just those generated by uniformly distribut-
ing a total charge kcn, au over a shell of radius Rw. Although the introduction of
these two potentials owes nothing to this observation, Watson (1958) argued that
the true environmental potential is generated by uniformly distributing two units of
positive charge over the surface of a sphere with radius equal to that of the 0%~ ion.
If this radius is taken to be 1.42 A (Johnson 1968), the resulting potential, to be
called the Watson potential, is independent of R and given by setting ke,, = 2 and
Rw = 2.683 in (3.9). This model predicts the wrong value for the constant part of
the potential at r, < 2.683 au for all R values excepting 4.689 56 au This difficulty
is rectified in the model, to be called the Watson—-Madelung (wM) model, which has
been used in density-functional calculations of crystal cohesion (Muhlhausen & Gor-
don 1981; Hemley et al. 1985). Here, one still accepts the Watson (1958) argument
that an anion electron sees two units of charge distributed over the surface of a
sphere but also demands that the depth of well is the same as that generated by
the point-charge lattice. The resulting potential has the form (3.9) with keny = 2,
which fixes Rw as 2R/¢cny. The WM potential cannot be entirely correct because it
is independent of the nature of the cations.

(d) Tests of environmental potentials
(i) Comparison with previous basis-expansion calculations

Optimization of an environmental potential has previously been attempted only
for the oAA model (Abarenkov & Antonova 1979a,b; Antonova 1979). These non-
relativistic calculations differed from those presented here in using a basis-set expan-
sion for the radial parts of the atomic orbitals and in including an approximation
to the negative short-range three-body contribution to U?(R). The magnitudes of
these three-body terms are almost certainly too large (Pyper 1991) because com-
parison with exact results (Andzelm & Piela 1977; Andzelm & Piela 1978) shows
them to be several times too great for both LiF and NaF. For MgO, it is only for
R = 3.981 au that the uncorrelated short-range potentials and rearrangement en-
ergy have been presented explicitly using an environmental potential reported by
Abarenkov & Antonova (1979b) as optimized: they claim 0.74 as the best value for
A in (3.7) while taking k to be 10 without optimization on the grounds that this
parameter is of only minor importance. Their predictions (table 1) for E2 (3.981),
V.54 (3.981) and V3 5 (3.981,/2), as well as the value of U?(3.981) calculated from
(2.1), agree reasonably with the corresponding RIP results. However, the present
calculations do not substantiate the claimed (Abarenkov & Antonova 1979a) unim-
portance of k since |U}(3.981)] is increased to 2692 kJ mol~! on using the value (16),
which is found to be optimal when A is fixed as 0.74. Furthermore, optimization of
both A and k yields values of 3.0 and 30 000 which produce the even larger prediction
(table 2) of 2716 kJ mol~! for |U?(3.981)].
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In-crystal modification of the oxide ion and electron correlation 101

Table 1. Comparison of RIP and basis-expansion results using the same OAA environmental
potential®®

MgO CaO

EP%(Re) Vioa(Re) Viaa(vV2Re) —UZ(Re) Vita(Re) Viaa(v2Re) —UL(Re)

basis 0.47764 0.03846 0.00595 2656 0.054 67 0.00009
RIP 048118 0.03738 0.005 60 2669 0.060 89 0.00021 2053

Basis results for ES%(R.), Viba (Re) and V4 4 (v/2R.) are from Abarenkov & Antonova (1979b)
for MgO and from Antonova (1979) for CaQO; RIP results present work calculated using the
numerical non-relativistic Hartree-Fock wavefunctions generated with the same OAA environ-
mental potential (3.7), with the A and k parameters reported as being optimal for the basis-set
calculations (see text).
> All quantities in au, except U2(Re) in kJ mol™*, calculated by substituting the previous three
quantities into (2.1). Re = 3.981 au (MgO) and 4.544 au (CaO), both at room temperature
(Landolt-Bornstein 1973). Basis set Fy.(Re) not reported (Antonova 1979) for CaO.

Table 2. Crystal binding energies predicted without including electron correlation®®

MgO Ca0

y

method® —UP(3.25) —U2(3.981) —U2(3.5) —UP(4.544)

Watson 1544 2670 —402 2073
WM 1672 2679 —158 2082
RVMW 1671 2681 —~159 2078
orvMw? 1671 2684 —144 2090
OAA 2716 2164
OFFM 1870 2716 276 2160
OHSMFS 1889 2712 618 2181
OEMFS 1887 2714 574 2176
ODMFS 1887 2714 598 2175

In kJ mol™*.

b All predictions derived from U (R) (2.1).

“Methods differ only in the model used for the environmental potential. The models are defined
in §3b,c.

dOptimum Rw values are 1.963, 2.500, 1.828 and 2.349 for MgO, R = 3.25 and 3.981 and CaO
R = 3.5 and 4.544, all in au

For CaO, the previous Antonova (1979) and RIP results do not agree (table 1).
Furthermore, with the values (A = 0.51, k = 10) reported as being optimal, the rIP
prediction for |UY(4.544)| of 2053 kJ mol~! is less than any of the results in table 2.
The optimum values (A = 3.0 and k£ = 24 000), found using the RIP program and pre-
dicting |U?(4.544)| to be 2164 kJ mol™!, are quite unlike those presented previously
(Antonova 1979). Since tests (Pyper 1986) have demonstrated that the rip program
is correct, the discrepancies between the present and previous results (Abarenkov &
Antonova 1979b; Antonova 1979) must arise from basis-set inadequacies in the latter.
There are no 0AA predictions for R less than R, because the parameters could not
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Table 3. Predictions for ozide ion properties at the equilibrium geometries®P

(r)2p <""2>2p —€2p E?e(Re)

method® MgO CaO MgO CaO  MgO CaO MgO CaO

Watson 1.591 1.591 3.447 3.447 0.3941 0.3941 1040 1040

WM 1.519 1.577 3.077 3.372 0.4553 0.4057 1151 1058
RVMW 1.570 1.585 3.319 3.414 0.5124 0.4137 1072 1047
ORVMW 1.547 1.549 3.202 3.233 0.4877 0.3743 1106 1098
OAA 1.495 1.498 2.894 2911 0.4597 0.3527 1257 1248
OFFM 1.491 1.496 2.876 2.908 0.4515 0.3461 1260 1239

OHSMFS 1.489 1476 2877 2.788 0.4454 0.3330 1254 1351
OEMFS 1.492 1.468 2.887 2.761 0.4518 0.3160 1253 1365
ODMFS 1.492 1.472 2.888 2.775 0.4524 0.3248 1254 1344

aAll quantities in au except for the rearrangement energies E (R.) expressed in kJ mol™". R.
taken as 3.981 au (MgO) and 4.544 au (CaO).

PThe properties reported for the 2p orbitals are averages w1th weights of and % over those for
the relativistic orbitals 2p;/, and 2ps/2 having j = -;— and 2 5 respectlvely

“See note ¢ to table 2.

be fully optimized. Thus, for MgO, the largest |U?(3.25)| was generated for A = 10.0
and k = 10!, further optimization requiring a larger k value producing computer
overflow. This result, as well as the A and k values found to be optimal at R = R.,
show the OAA potential to be mathematically inconvenient. It will not be consid-
ered further, except to compare it with the oFFM function which can be expected to
contain similar physics while appearing in a preferable form.

(ii) Comparison of environmental models

The cohesive energies (table 2) show that, as judged by the variational criterion,
the different models for F én)v(ra, R) fall into the same three groups as those already
used for classification. Thus, the Watson, wMm, RvMw and ORVMW models predict sig-
nificantly less cohesion than the other approaches. Although the former four methods
yield comparable results at R = R., the Watson is much poorer at smaller R. None
of these four models predicts CaO at R = 3.5 au to be stable with respect to Ca?",
O~ ions and free electrons. The energy improvement on passing from the RvMW to
the oRvMW model is not large while E%(R), V2, (R) and V3 , (v/2R) are not greatly
changed. The orvMW approach produces a smaller Ry than the RvMw model for all
R, excepting those very much less than R, where the situation is reversed. These
smaller Rw values generate a slightly more contracted anion as shown (table 3)
by smaller 2p orbital mean radii and mean-square radii and slightly larger EY,(R).
This increase is more than offset by smaller V.3, (R) in the orRvMW method, which
therefore predicts a greater cohesion.

The orrM predictions for |UY(R)| are greatly enhanced over those of the OrRvMW
model, being 32 and 70 kJ mol~! larger for MgO and CaO, respectively, at R = R..
At the smaller R of 3.25 au for MgO and 3.5 a.u for CaO, the OFFM method improves
on the orRvMW results by no less than 199 and 420 kJ mol 1. This shows that the
orrM function (3.8) describes an)v(ra,R) significantly better than any of the four
methods where this has the form of the potential generated by a shell of charge. Since
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Table 4. Crystal cohesion predicted without including electron correlation®

MgO CaO

e —

method® D. R. B D. Re B

Watson 2700 4.182 19.4 2164 4.999 4.95
WM 2699 4.156 17.2 2158 4.952 8.69
RVMW 2704 4167 17.0 2147 4.940 8.34
ORVMW 2713  4.202 184 2161 4.940 8.91
OEMFS 2725 4.117 17.0 2206 4.821 8.66
expt® 3038 3.974 17.5 2644 4.537 11.3

®D. in kJ mol™!, Re in au and B in 10° N m~2.

See notes b and ¢ to table 2.

°D. values from Cohen & Gordon (1976), R. values at 0 K from Touloukian et al. 1977, B value
for MgO is the average of three different results reported by La & Barsch (1968) and the B
value for CaO is from Weir (1956).

the orFrFM function, like the latter four, cannot be positive at any r,, it can differ from
these in only two respects. These are, first, the region of space in which the function
hardly deviates from the constant point-lattice result —geny /R, and, second, the rate
at which it increases towards zero when 7, has values greater than the largest at which
it is still almost constant. For both MgO and CaO at both distances (R) considered
in table 2, each of the oFFM functions remains almost constant (= —@eny/R) up
to significantly larger values of 7, than either the RvMw or orRvMw function. Thus,
for MgO at R = 3.25 and 3.981 au the OFFM potentials have centres (r) at 2.64
and 3.63 au, respectively, while those for CaO at R = 3.5 and 4.544 au are centred
at 2.55 and 3.54 au Not only is each of these four centres located at a distance
from the anion nucleus significantly greater than Rw in the corresponding ORVMW
potential (see table 2), but also each of the oFFM potentials increases much more
rapidly towards zero. Thus, for both MgO at R = 3.25 au and CaO at R = 3.5 au,
Forrpm(ra; R) deviates only insignificantly from —@en, /R right up to r, values of
around 2.26 au, while for both MgO at R = 3.981 au and CaO at R = 4.544 au,
this essentially constant region of Foppm(7a; R) extends up to around r, = 2.8 au
These environmental potentials have all risen to reach essentially zero for r, = R.
Thus, the OFFM potential increases much more rapidly than the Watson, wMm, RvMW
or ORVMW functions, the rise in the former being roughly exponential with a high
exponent compared with an r;! variation in each of the latter four models. This
coupled with the much larger oFFM binding energies shows that these four models
poorly describe the repulsive portion of FOuv(r,; R). The OFFM potential generates
an anion electron density which is much more contracted than those produced by the
Watson, wM, RVMW or ORVMW models, as shown by significantly smaller 2p orbital
mean radii and E(R,) values for MgO and CaO that are greater than the oORVMW
predictions by 154 and 141 kJ mol~!, respectively. The oFFM and 0AA models predict
very similar U?(R,) values and O?~ 2p orbital properties.

The ousMFs, 0EMFS and OoDMFS functions differ from the present single-function
models since Fgg{,(ra; R) is always negative in the latter. However, the former three
potentials become positive around r, = R if optimization of A and k generates
sufficiently large A. Each of these three functions predicts very similar UY(R) (ta-
ble 2) and anion properties (table 3) and is a significant improvement, as judged
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by the variational criterion, over the oaa and OFFM models, except for MgO at
R = 3.981 au Here all five descriptions produce similar results because the OHSMFS,
OEMFS and ODMFS potentials remain negative at all r,, hardly differing from the oaa
and orFrM functions. However, at R = 3.5 and 4.544 au for CaO, as well as for MgO at
R = 3.25 au, the large maxima around r, = R in Fg%)v(ra; R) of 16.2, 3.6 and 1.8 au,
respectively, coupled with |U?(R)| predictions enhanced over the oaa and OFFM re-
sults, show that the true environmental potential is positive in spatial regions of
high-cation electron density. These values should be compared with Madelung well
depths (¢eny/R) in the range 0.75-1.1 au The improvement afforded by the oHSMFS,
OEMFS or ODMFS descriptions over the oaA and OFFM models is especially marked
for CaO at R = 3.5 au, where the former yield a cohesive energy larger by at least
300 kJ mol~!. Even at R = R., each of the former three models predicts the O?~ ion
in CaO to be significantly more compressed than either the 0AA or OFFM descrip-
tions, as manifested by the smaller 2p orbital mean radii and mean-square radii as
well as rearrangement energies larger by at least 96 kJ mol~*.

For the onsmrs and opMFs models, U2(R) was not calculated at further R val-
ues because both their predictions are very similar to those of the OEMFS method.
No further calculations were performed using the OFFM approach since this has been
shown to be inferior to the OEMFS description. Since the optimization of environmen-
tal potentials containing two variables is a considerable task, attention was restricted
to the oEMFS method and those in which Fé?ll,(ra; R) has the form generated by a
charged shell. The latter methods are considered further because they have been
used most extensively, particularly in density-functional descriptions of ionic solids.
It is therefore worthwhile to conclusively demonstrate the shortcomings of such de-
scriptions for ionic oxides. The predictions of each of these four methods for D, R,
and B are compared in table 4 with the corresponding results of the OEMFS method.
The latter predicts D, to be enhanced by at least 12 and 45 kJ mol~! for MgO and
CaO0, respectively, while reducing the overestimations of R, by at least 0.04 and
0.12 au These reductions in the discrepancies between theory and experiment con-
firm the deduction drawn from tables 2 and 3 that the oEMFS approach is much
better than the Watson, wM, RvMwW or ORVMW models. Theory and experiment are
compared only after describing the new refinements introduced into the calculation
of the contributions arising from electron correlation.

4. The electron correlation contribution to the crystal cohesion

(a) The correlation contribution to the rearrangement energy
(i) Density functional formulation

The only methods currently feasible for computing the correlation energy of an in-
crystal anion seem to be those based on density-functional theory. These rely on the
Hohenberg-Kohn theorem (1964) which shows that the correlation energy (E£™)
of a species S depends only on its total electron density prs(r) and a universal
correlation-energy functional F°°*[p(r)]| through

By = / prs(r) % [prs(r)] dr- (41)

The exact form of F[p(r)] is unknown. In the widely used local density ap-
proximation, it is assumed that prs(r) varies sufficiently slowly with = such that at
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each point in space the functional F“*[p(r)] can be taken to equal that of a non-
relativistic infinite electron gas having a uniform density equal to that of the system
at that point (March et al. 1967). For such an electron gas, F°*[p(r)] is known
exactly in the limits of low (Carr et al. 1961) and high (Carr & Maradudin 1964)
densities, while for intermediate densities it can be evaluated by interpolation. The
resulting functional presented as equations (20)—(22) of Gordon & Kim (1972), to
be called the Gk functional, is used here. Dirac—Fock theory is used to construct all
total electron densities prg(r).

A one-electron system is spuriously predicted to have a non-zero correlation en-
ergy if this is calculated using the Gk functional in (4.1). This shows that such an
evaluation of E¢" for a many-electron system introduces unphysical terms describ-
ing the correlation of each electron with itself (Cowan 1967). There are several ways
(Carroll et al. 1987; Cowan & Wilson 1991) of modifying this calculation of EZ™ to
remove these spurious self-correlations. The original Cowan (1967) modification, to
be used here, yields a prediction, denoted E§™, as

B =5 [ pir)F ps(r) — pi(r)] (4.2)
1€s
where the sum is over all the orbitals ¢;(r) occupied in the Dirac-Fock description
of species S.

(ii) Tests of density-functional predictions of total correlation energies

For a variety of atomic species, table 5 presents the total correlation energy defined
as the exact non-relativistic energy minus the non-relativistic Hartree-Fock energy.
For any species containing more than two electrons, the most accurate value for the
exact non-relativistic energy is derived by subtracting the computed contributions
from relativity, Breit interaction, Lamb shift and nuclear motion from the total en-
ergy evaluated as the sum of all its experimentally measured ionization potentials.
The same results (table 5) for three- and four-electron systems have been indepen-
dently deduced (Clementi 1963a, b; Clementi & McLean 1964; Vosko & Wilk 1983;
Pyper 1985; Savin et al. 1986; Carroll et al. 1987) despite the use of slightly different
experimental data and different methods of evaluating the four corrections. How-
ever, for isoelectronic sequences with 2p° or 2p® outermost electronic configurations,
these differences mean that it is not always clear whether increased nuclear charge
increases or decreases the correlation energy. The Clementi results, derived using
relativistic corrections computed by perturbation theory, differ from those of Carroll
et al. (1987) because the latter use the slightly different Lamb shift corrections of
Veillard & Clementi (1968). The Vosko & Wilk (1983) results, differing from those
of Carroll et al. (1987) in omitting the Lamb shift corrections, are thus less accurate
but will still reproduce the trends along an isoelectronic sequence because the Lamb
shift is non-negligible only for the innermost electrons. The data of Savin et al. (1986)
differ in that the relativistic, Breit and Lamb shift corrections were computed using
the Oxford Dirac-Fock program (Grant et al. 1980; McKenzie et al. 1980).

The density-functional expression (4.2) invariably overestimates (table 5) the mag-
nitude of the correlation energy by a factor of between two to four. On traversing
any isoelectronic sequence, this overestimation becomes more pronounced with in-
creasing nuclear charge. However, for the two-, three- and four-electron species, (4.2)
correctly predicts that the correlation energy is enhanced in magnitude as the nuclear
charge is increased along an isoelectronic sequence, even though these enhancements
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Table 5. Density-functional predictions of total correlation energies of mononuclear species®P

H™ He Lit Be?* B3+
D Fun 0.0708 0.1073 0.1271 0.1420 0.1540
best® 0.0398 0.0420 0.0435 0.0443 0.0447

Li Bet B2t Li~ Be BT
D Fun 0.1354 0.1575 0.1748 0.1709 0.2144  0.3370
best 0.0453 0.0474 0.0486 0.0726 0.0943  0.1113

(o F Ne™ Na?t F~ Ne Na*
D Fun 0.5922 0.6394 0.6779 0.7113 0.6903 0.7397 0.7801
Ex Clem? 0.323 0.324 0.328 0.336 0.398  0.393 0.396

Ex Sav®  0.331  0.323  0.321 0.400  0.387
Ex Carr! 0.390
Ex VW® 0.394  0.381  0.379
Cl Cl1- Ar
D Fun  1.3358 1.3822 1.4342
Ex Clem 0.712 0.791
Ex Carr 0.714 0.787

Ex VW 0.667 0.705 0.732

2All correlation energies are negative and reported as the moduli expressed in au
PDensity-functional predictions, labelled D Fun, computed from equation (4.2) with the rela-
tivistic Dirac-Fock total electron densities prs(r).

°Best current values (Pyper 1985) evaluated from exact non-relativistic energies computed by
Frankowski & Pekeris (1966).

dExperimentally derived values from Clementi (1963a) for first-row neutral atoms, cations and
F~, from Clementi & McLean (1964) for O~ and from Clementi (1963b) for second-row species.
°Experimentally derived values from Savin et al. 1986.

fExperimentally derived values from Carroll et al. 1987.

gExperimentally derived values from Vosko & Wilk 1983.

are grossly overestimated. Density functional theory similarly predicts that increased
nuclear charge enhances the magnitude of the correlation energy in an isoelectronic
sequence having a 2p®, 2p® or 3p® outermost electronic configuration. Although this
agrees with the experimental result that the correlation energy of Ar is greater in
magnitude than that of Cl™, the disagreement between the Clementi and Savin data
for the systems having 2p® or 2p°® outermost electronic configurations means that
it is not known whether (4.2) predicts the correct trend in these two isoelectronic
sequences. However, for both these sequences, it is clear that (4.2) significantly over-
estimates the nuclear-charge dependence of the correlation energy since the Clementi
and Savin data agree that this depends only weakly on the nuclear charge.

The lack of close agreement between experiment and the predictions of (4.2) cannot
be ascribed either to using this rather than some other variant of density-functional
theory or to using relativistic electron densities with the non-relativistic Gk function-
als. The nuclear charges of all the species in table 5 are sufficiently small that these
correlation energies differ only marginally from those predicted using non-relativistic
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In-crystal modification of the oxide ton and electron correlation 107

wavefunctions in (4.2). The latter predictions of —1.4331 and —1.3812 au for the Ar
and Cl~ correlation energies, for example, differ little from those of table 5. The same
correlation-energy trends are predicted if Hartree-Fock electron densities are input
to the fundamental density-functional formula (4.1). For example, this predicts the
Ar and Cl~ correlation energies to be —1.4586 and —1.4067 au, less than 2% different
from the results of (4.2). The spurious self-correlation thus introduced would be ex-
pected to constitute the largest fraction for the two-electron species. However, even
for these, the predictions from (4.2) differ from those of (4.1) by less than 10%, the
largest difference arising for H™, where the prediction of (4.2) should be compared
with that of —0.0792 au, derived using the total Hartree-Fock density in (4.1).

Many approximations for F™[p(r)] have been proposed, namely a functional
(Vosko et al. 1980) containing spurious self-correlations, two alternative methods
for removing self-correlations (Stoll et al. 1978; Vosko & Wilk 1983) as well as two
different functionals (Langreth & Mehl 1983; Perdew 1986) involving the gradient of
the electron density but which still contain unwanted self-correlations. However, it
seems that there is currently no form of density-functional theory which can always
predict the trend of the correlation energy in an isoelectronic sequence. Thus, neither
(4.2) with the gk functional, nor any of the functionals just referenced and examined
by Savin et al. (1986), reproduces the result that F'~ has a correlation energy of
very slightly greater magnitude than that of Ne. Here, the functional of Langreth
and Mehl (1983) is the least unsatisfactory since it predicts these two correlation
energies to be equal, while all the other functionals predict that Ne has a correlation
energy of greater magnitude than that of F~. Nevertheless, this functional cannot
be regarded as better than the others because it erroneously predicts the magnitude
of the correlation energy to decrease with increasing nuclear charge in both the He
and Be isoelectronic sequences.

The magnitude of the GK correlation-energy functional is enhanced in spatial re-
gions of increased electron density. This explains why (4.2) predicts that, upon con-
traction of the electron-density distribution, the magnitude of the correlation energy
is increased and, hence, why this is predicted to become larger on increasing the nu-
clear charge in an isoelectronic sequence. However, if the correlation energy is com-
puted by treating the correlation as a perturbation on the Hartree-Fock function, the
result depends on both the matrix elements linking the Hartree—Fock ground state to
the appropriate excited states as well as the excitation energies from the ground to
these excited states. The magnitude of the correlation energy would be expected to
be enhanced by either increase of the matrix elements or by decrease of the excitation
energies. The contraction of the electron density that occurs on increasing the nuclear
charge in an isoelectronic sequence would be expected to generate larger matrix ele-
ments, thus enhancing the magnitude of the correlation energy, while this magnitude
would be expected to be decreased by the larger excitation energies accompanying a
greater nuclear charge. On passing from F~ to Ne, the increased excitation energies
must outweigh the enhanced matrix elements to reduce the magnitude of the corre-
lation energy. Although the Gk functional clearly takes account of the enhancement
of the matrix elements resulting from contraction of the electron density, it is un-
clear how this functional or (4.2) incorporates the tendency of increased excitation
energies to reduce the magnitude of the correlation energy. This might explain both
why (4.2) fails to predict F~ to have a correlation energy of greater magnitude than
Ne and why (4.2) overestimates the increase in the magnitude of the correlation en-
ergy occurring on increasing the nuclear charge in the He, Be and Ar isoelectronic
sequences.
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108 N. C. Pyper

Table 6. Comparison of experimental and density-functional predictions ifor electron correlation
contributions (Ieore(S)) to ionization potentials®~

S Nat Ne F- K* Ar Ccl Rb* Kr Br~

outer 1.854 1.674 1.406 1.582 1.458 1.262 1.504 1.395 1.217
all 1.872 1.681 1.402 1.607 1.470 1.261 1531 1.409 1.214
expt 1.667 1.774 2.066 1.094 1.067 1.091 1.013 0.988 0.989
Acorr(¢) 0.890 1.055 1.474 0.681 0.726 0.865 0.662 0.701 0.815

S Cst Xe I~ B* Be Li~ B%t  Bet Li

outer 1.421 1.322 1.159 4.075 1.875 1.145 0.0 0.0 0.0
all 1.448 1.330 1.155 4.412 1.549 0.965 0.568 0.432 0.228
expt 1.191 0917 0876 1.706 1.278 0.742 0.106 0.084 0.050
Acorr(¢) 0.823 0.689 0.758 0.387 0.825 0.769 0.187 0.194 0.219

2All results in electronvolts.

PExperimental Icor(S) values for three-electron species taken from table A5 of Pyper (1985).
“Experimental Icor(S) values for four-electron species calculated from the data presented in
table A3 of Pyper (1985) by the method used for the three-electron systems.

dExperimental Icorr(S) values for species having np® outermost electronic configurations calcu-
lated as Iexpt(S) — Ipr(S) neglecting the small contributions from Breit interaction, Lamb shift
and nuclear motion. Experimental ionization potentials Iexpt(S) taken from Moore (1971) for
all neutrals and cations, except for the Cs* result, which is from Cotton & Wilkinson (1966).
Moore (1971) gives Iexpt(Cst) = 25.1 eV, which would yield the anomalously large Ieor(Cs™)
value of 2.89 eV For anions taken from the table of recommended electron affinities Hotop &
Lineberger (1975). Dirac-Fock ionization potentials Ipr(S) computed here.

“Predictions labelled ‘outer’ and ‘all’ are calculated from (4.3) using the density-functional
result (4.2) considering, respectively, just the outermost (outer) electrons (2s for three- and
four-electron species otherwise the five or six np electrons) and all the electrons.

fAcore (¢) calculated from (4.4) using the experimental Icor(S) values and those Iceor:(S) com-
puted considering in (4.2) all the electrons.

(iii) Test of density-functional predictions of correlation contributions to ionization
potentials

The correlation contribution (/e (S)) to the ionization potential of species S is
the difference between the ionization potential predicted using exact non-relativistic
wavefunctions and that predicted using non-relativistic Hartree-Fock theory. Al-
though the former can be computed only for the simplest species, it can always be
derived by subtracting the contributions from relativity, Breit interaction, Lamb shift
and nuclear motion from the experimental ionization potential. If the small relativis-
tic contribution to the correlation energy is neglected, the relativistic contribution
to the ionization potential is given by the difference between the Dirac-Fock and
Hartree-Fock ionization potential predictions. The experimental .o, (S) values thus
derived are compared in table 6 with predictions (Iccorr(S)) of density-functional
theory calculated from

ICcorr(S) = ngorr - Egcorr~ (43)

Here, ES°™ and ES°™ are the predictions of (4.2) for, respectively, the correlation
energy of species S and that of the species ST produced by ionization of the most
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Table 7. Comparison of different density-functional predictions for Ieorr(Ne) and Ieore(F~)>®

VWN SPP  GCL GeP  (4.1)° (4.2)¢  expt

Iorr(Ne) 1.80 1.03 212 1.33 1.68 1.68 177
Ioe(F-) 150 0.87 1.82 1.14 1.40 1.40  2.07

#All in electronvolts calculated as Egy™ — Eg”™ with these energies derived as described below.

PThe results in the first four columns were computed by Savin et al. 1987 using methods defined
below:

VWN: Vosko et al. (1980) using functional without gradient corrections and containing self-
correlation;

SpP: Stoll et al. (1978) using functional without gradient corrections but with self-correlation
eliminated;

cacL: Langreth & Mehl (1983) using functional with gradient corrections and self-correlation.
Gep: Perdew (1986) using functional with gradient corrections and self-correlation.

°Present work using GK functional without gradient corrections and containing self-correlation
through the use of (4.1) with density prs(r) computed from Dirac—Fock wavefunctions.
dPresent work using (4.3), (4.2), GK functional and Dirac-Fock densities prs(r), thus eliminating
self-correlation but with no gradient corrections.

loosely bound electron in S. The predictions labelled ‘all’ in table 6 were computed
from correlation energies derived by substituting into (4.2) the electron densities
derived by considering all the electrons of both the species S and St while those
labelled ‘outer’ were derived by considering in (4.2) only the outermost electrons of
both S and S*.

The close similarity between the Iccorr (S) values, derived by including all the elec-
trons, and those generated by considering only the outermost electrons shows that
the correlation energies of the innermost electrons of St and S largely cancel in
the calculation of Iceor(S) as the difference (4.3). The results in table 5 show that
there will be large errors in the predictions of (4.2) for the correlation energies of
these inner electrons. However, the cancellation of the inner-electron contributions
in the calculation of Iceorr(S) prevents these large errors from being propagated into
the Iceorr(S) result. Furthermore, a similar cancellation of errors occurs in the cal-
culation of Iceorr(Ne), even when (4.2) is evaluated for Ne and Ne™ including all
the electrons. Thus, although table 5 shows that (4.2) overestimates the correlation
energy of both these species by a factor of about two, the Icqorr(Ne) value derived
through (4.3) agrees excellently with the experimental value of I, (Ne). Although
both Iceorr(Na™) and Iceor (F7) do not agree so well with experiment, the fractional
errors in both these predictions are much less than those in the density-functional
values of the total correlation energies of Net, Ne, F~ or F. However, (4.2) disagrees
qualitatively with experiment in predicting that I, (S) decreases with decreasing
nuclear charge in the Ne isoelectronic sequence, whereas I (F7) is actually larger
than I.o.(Ne) which is in turn greater than Ioo,,(Na™). This difficulty is not a pe-
culiarity of using (4.2) with the GK functional since the results in table 7 show that
all other variants of density-functional theory currently available also fail to predict
that I.on (F7) is greater than Ioo,(Ne). Furthermore, none of these variants predicts
Iorr(Ne) and I (F7) any more accurately than (4.2) with the Gk functional.

The difficulties with present density-functional predictions for .. (S) show the
need to introduce correlation correction factors Ao (¢) depending on the species S
and defined by

Acorr(C) = Icorr(S)/ICcorr(S)- (44)
Phil. Trans. R. Soc. Lond. A (1995)
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The factors Acor(¢) (table 6) are constant neither within nor between isoelectronic
sequences. For a given sequence, it is useful to parametrize this variation using a
quantity ¢ which is thus controlled by that facet of the electronic structure which
causes the correlation correction factors to deviate from unity. For isolated mononu-
clear species, there is, within a given isoelectronic sequence, only one independent
variable. This variable, denoted ¢, will be defined as the negative of the net charge,
the variation of Age(¢) within an isoelectronic sequence being described by a poly-
nomial in . The correlation energy predicted from (4.2) for a free O?~ ion was
derived by computing a series of 0%~ wavefunctions in which the radius Ry in the
RvMW model for the environmental potential was successively increased. This method
had to be used because the unbound nature of the free O?~ ion prevented the di-
rect computation of its wavefunction. After extrapolation to the limit of infinite Ryy
and subtraction of the O~ correlation energy of —0.592 22 au predicted from (4.2),
the correlation contribution to the first ionization potential of O%~ is predicted to be
0.029 229 au Comparison of this result with the value of 0.083 au, deduced by extrap-
olation (Clementi & McLean 1964) of experimental data along the Ne isoelectronic
sequence, shows Ao (2) to be 2.840. This result, taken with the values Acop(—1),
Acorr(0) and Agopr (1) for Nat, Ne and F~, shows that the variation of Ao, (¢) along
the Ne isoelectronic sequence is reproduced by

Acorr(€) = 1.055 + 0.292¢ + 0.127|¢[>241. (4.5)

(iv) The in-crystal oxide anion

The correlation contribution (E™(R)) to the rearrangement energy of the O~
ion in an ionic crystal having closest cation—anion separation R is currently best
evaluated by using

Ei(R) = Aconr(QIEF" (R) — EG*"], (4.6)

where ES(R) is the prediction derived from (4.2) for the correlation energy of
the in-crystal O%~ ion with ES®™ being the corresponding result for the correlation
energy of a free O~ ion. For an in-crystal ion, ( is defined as the negative of the net
charge of the isolated isoelectronic species for which (4.3) predicts the same fraction
of the correlation contribution to the ionization potential. Isolated species having
non-integral ¢ can be treated theoretically, being here merely the ion with nuclear
charge 10 — ¢ for the Ne isoelectronic sequence of interest. The abundant evidence
that the properties of the O?~ ion are strongly influenced by its environment in the
crystal shows that its ¢ value is not 2. This must therefore be deduced by considering
some in-crystal ionic property, either reliably computed or deduced from experiment,
whose variation is controlled by the same factors which underlie the deviations of
the Acorr(¢) from unity.

A property suitable for determining ( is the polarizability because, in its quantum-
mechanical perturbation-theory description, this, like the correlation energy, is de-
termined by both excitation energies and matrix elements between the ground and
excited states. The coupled Hartree-Fock (cHF) prediction of the polarizability is
more closely related to the correlation energy than the exact polarizability because
the two former arise in perturbation theory at second order while the latter occurs
at higher order in a double-perturbation treatment. This probably explains why the
contribution of electron correlation to the polarizability, the correlation polarizabil-
ity, is much more environmentally sensitive than the cHF prediction. Thus, the latter
is reduced from 10.7 to 5.39 au when a free F~ ion enters a LiF crystal (Fowler &
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Table 8. Ion polarizabilities, electron numbers, dipole-dipole Cg(ab) dispersion coefficients and
anion correlation correction factors P

cation anion 0%~ 0%~ correlation

A A

Oler ac Pz GC¢(CC) aa Py Cg(AA) Cg(CA) ¢ Acorr (€)

MgO 11.831 0.486 4.455  0.536 11.345 4.455  60.491 4.292 0944 1.436
CaO 19.289 3.193 6.106 10.574 16.096 4.455 102.226 29.380 1.516  1.987

2All polarizabilities and dipole—dipole dispersion coefficients in au
oy values from Boswarva (1970), other quantities derived as described in text.

Madden 1983) compared with a total polarizability reduction from 15.1 (Nellin et
al. 1982) to 6.15 au (Wilson & Curtiss 1970; Fowler & Madden 1983) corresponding
to reduction of correlation polarizability from 4.4 to 0.76 au Since, for the in-crystal
ions, only total polarizabilities are known, these should be compared with the po-
larizability that a free anion would have if its large correlation polarizability was
reduced to a typical in-crystal result. Thus, one value of the function expressing ¢
in terms of polarizability a is ( = 1, @ = 11.5 au corresponding to a free F~ ion
having the correlation polarizability of that in LiF, a second { = 2 arising for a
free 0%~ ion corresponding to infinite . These two points are reproduced by setting
k1 = 0.092 754, ks = 0.005797 in the relation (in au)

a™t = ky — kot (4.7)

suggested by the inverse fourth-power dependence of polarizability on nuclear charge
(Pauling 1927). The correlation correction parameters ¢ and correlation correction
factors Acorr(¢) presented in table 8 were derived by substituting into (4.7) the ex-
perimentally derived values of the oxide-ion polarizability in MgO and CaO and then
using (4.5).

(b) The dispersion energy
(i) Basic formalism

The dispersive attraction between two ions a and b separated by a distance r,p, is
an infinite series of terms —x2P(r,y,)C,, (ab)r, ", where the C),(ab) are dispersion coef-
ficients and n is an even integer not less than six. The non-negative dispersion damp-
ing functions x2°(r), which decrease with decreasing r, arise from ion-wavefunction
overlap reaching their maximum values of unity only for large r, where overlap is neg-
ligible. For distances r where overlap is appreciable, the x2°(r) decrease rapidly with
increasing n thus ensuring that terms with high n are unimportant. These terms are
also unimportant at large r owing to their =" dependence even though the damping
function is close to unity. Hence, only the first two terms in the dispersion series need
be retained.

The first (n = 6) term in the dispersion series arises from the attraction of the
dipole induced on one ion by a dipole instantaneously present on the other ion. The
corresponding dipole-dipole (Cg(ab)) dispersion coefficient can be evaluated (Fowler
et al. 1985; Pyper 1986) to an accuracy of at least 5% by using the Slater-Kirkwood
(1931) formula (equations (2.25) of Pyper 1986) provided that each electron number
P, for the ion a (table 8) is chosen such that this formula exactly reproduces the
Cs(it) coefficient for the inert gas (i) isoelectronic with ion a from the polarizability
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Table 9. Dipole—-quadrupole dispersion coefficients and dispersion damping parameters®™°

cation anion 0%~

Cs(CC)  do  Cs(AA)  da  CP(CA)  CQP(CA)

MgO 2,135 3.860 1162.290 1.958 41.234 8.549
CaO 101.530 3.240 1752.438 2.254 251.827 141.051

#All dipole—quadrupole dispersion coeflicients in au derived using the Starkschall-Gordon for-
mula from the Cg(ab) coefficients in table 8.

>Cation dc and anion da dispersion-damping parameters derived as described in text in §40b (ii).
da derived from orbital decay using (4.8) and (4.10).

°All quantities computed using free-cation wavefunctions and O*~ wavefunctions generated
using the OEMFS model for the crystalline environment.

a; of that gas. Ab-initio quantum chemistry computations (Fowler & Madden 1985)
taking account of electron correlation yielded accurate cation polarizabilities (ag,
table 8)). The total molar polarizabilities (c.;) were deduced using the Clausius—
Mossotti relation from experimental refractive-index data (Boswarva 1970), the in-
crystal O~ polarizabilities (ay) being ag, — ac.

The second (n = 8) term in the dispersion series originates as the sum of two
contributions, the first of which, governed by the coefficient C’8D Q(ab), arises from
the quadrupole induced on the second ion by a dipole instantaneously present on the
first ion. The second contribution, arising from the corresponding interaction in which
the dipole is instantaneously present on the second ion, is governed by the coefficient
Cg*" (ab), with Cg(ab) being equal to the sum C%(ab)+CSP (ab). These coefficients
(table 9) were evaluated from the Starkschall-Gordon (1972) formulae (equations 46
of Pyper 1991) with only the contributions of the six outermost electrons included in
the calculation of the expectation values ((r™);) of the nth power of the distance of
the electrons from the nucleus of ion ¢. This approach has been shown (Pyper 1986;
Fowler & Pyper 1986) to be the most reliable in the absence of ab-initio quantum
chemistry computations.

The total crystal dispersion energy Ugisp(R) was evaluated from result (2.22) of
Pyper (1986). This was derived by summing the dispersive attractions between ion

quadrupole terms and noting that the only dispersion damping functions differing
non-negligibly from unity are those x$* (R) for the interactions between a cation and
its six closest anion neighbours, those xA4(y/2R) between an anion and its twelve
closest anion neighbours and the corresponding cation terms x$¢(\/2R).

(ii) The dispersion damping functions

The x2°(r) with n = 6 and n = 8 have been derived (Pyper 1986, 1994) from
the general formalism of Jacobi & Csanak (1975). The x22(r) for two like species
a depend only on the internuclear separation r and a single dispersion damping
parameter characteristic of species a. The parameter entering x3*(r), denoted d,;,
differs, in principle, from that d,, determining x3*(r). The functions x2°(r) for two
unlike species a and b depend on the same two dispersion damping parameters that
control the damping of the interactions between two like species.

Each dar, (L = 1 or 2) consists of a ground-state contribution (d,;) plus one
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contribution (daer,) from the lowest excited state (eL), with symmetry correct for
contributing to the sum-over-states perturbation description of the corresponding
dispersion energy (Lassettre 1965; Csanak & Taylor 1972):

daL = dag —I" daeL. (48)

The d,;, govern the momentum (q) dependence of the X,1(q), which are the an-
gular independent parts of the Fourier transforms of the transition matrix elements
Xae(r, ) (Csanak & Taylor 1972) which enter (Jacobi & Csanak 1975) the dispersion
energy. The d,;, are determined (Csanak & Taylor 1972) by the exponential decay of
the integrand at large distances r, in the expression

Xo(q) = / P2 Py (1) /1l Pact (ra) /raln (qra) dr, (4.9)

yielding the X,1,(¢) in an orbital description of the electronic structure of the species
a. Here ji(gra) is a spherical Bessel function (Rose 1961), while P,,(r,)/r. and
P,c1.(7a)/ra are the radial parts of the wavefunctions of the outermost orbital in the
ground state and excited state eL, respectively. The exponential decreases of both
these wavefunctions, at distances r, from the a nucleus significantly greater than
those at which they attain their maxima, determine d,, and d,1, through

[Pag(T'a)/T'a] X exp(—dagra)v [PaeL (Ta)/Ta] X eXp<_daeLTa)- (410)

If the potential energy experienced by an electron in species a varies as r; ! at large

distances from the nucleus, as is the case for a free atom or cation, the decay of
each of these orbitals is determined by the corresponding orbital eigenvalue (in au)
according to

dag = \/(—25ag)1 daeL = \/("2€aeL)- <411)

Since both the ground and excited states eL of light cations are essentially unaffected
by their environment in the crystal, the cation d,;, were evaluated by the previous
method (Pyper 1986) of using (4.11). Although the potential energy experienced by
an anion electron in the RvMw and ORVMW models varies as r; ! at intermediate 7,
in the vicinity of the cation, such variation occurs only at extremely large r, in the
OEMFS, ODMFS and OHSMFS models. Since for these three models it would therefore
be incorrect to derive the d,y, from (4.11), these parameters were evaluated through
(4.10) by considering the decay of the wavefunction from an r, value just beyond the
maximum in the wavefunction to the value at which this was reduced by a factor of
about twenty. The resulting range of r,, from about 4.5 to 7.0 au, is not only just the
range giving rise to a large portion of the overlap with filled cation orbitals, but is
also the range making the greatest contribution to (4.9). The d,;, predicted through
(4.10) for the oEMFS and ODMFS models are greater than those similarly calculated
for the RVMW or ORVMW approaches because the former two models produce anion
orbitals that are significantly more contracted. The forms of the x2°(r) show that, for
given 7, increase of d,;, enhances the corresponding damping function x2°(r) with the
result that the magnitude of the dispersion energy is reduced less by the damping. It
should have been expected that an environmental model producing more contracted
anion orbitals and, hence, smaller overlap between the orbitals of two interacting
species should predict smaller reduction by damping of the undamped dispersion
energy. The oEMFs and oDMFS models predict anion eigenvalues e,, (table 3) and
€acr, SMaller in magnitude than those of the RvMw or ORvMW models. Consequently,
a greater dispersion damping would have been predicted in the two former models
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than in the latter had the anion d,r, been (incorrectly) evaluated from (4.11). The
calculation of the anion dispersion damping parameters using (4.10) is the third of
the three major refinements of the computation of crystal cohesion to be presented
in this paper.

In the oEMFS and oDMFs models, the decay of the anion orbitals at very large
ro of 30 au or more from the nucleus corresponds closely to that predicted from
the orbital eigenvalues, being not nearly so rapid as that in the region (4.5-7.0 au)
used to evaluate the d,;. However, since these large r, values make only minute
contributions both to the overlap between the orbitals of two interacting species as
well as to the integral (4.9), it would be quite inappropriate to evaluate the anion
d,1, by examining anion orbitals at these very large distances.

For an ion having an np® outermost electronic configuration, the same excited state
(eL) contributes in (4.8) to both d,; and d,2, which become equal to a common value
denoted d,. For both the O?~ and Mg?" ions, the state el in (4.8) is the 'P term
of the 2p°3s configuration but is the 3p°3d 'P term for Ca?*. For each crystal, the
oxide-ion dispersion damping parameter d, was derived from the orbitals arising at
R = R.. Since in all the environmental models, excepting that of Watson, the oxide-
ion orbitals in MgO differ from those in CaQ, the da values in these two crystals are
not the same: table 9 presents those derived from (4.10) using the 0EMFS model.

5. Prediction of the cohesion of MgO and CaO

(a) The importance of the environmental potential and damping of the dispersion
energy

The D., R. and B values predicted without considering electron correlation
showed the OEMFS environmental model to be considerably better than those where
F éﬁl(ra;R) has the form of a potential generated by a shell of charge. This im-
provement is only fully manifested in calculations (tables 10 and 11) where all the
contributions (E™(R), VU (zapR) and Ugisp(R)) arising from electron correlation
are introduced using the most accurate methods currently available. The predictions
in the columns labelled (P) are preferable to those in the columns headed (&) because,
in the former, Ug;sp(R) is evaluated using da values calculated by the theoretically
correct method of deriving d,, and d,er, from the decay (4.10) of the orbital wave-
functions. The predictions labelled (), derived using d values calculated through
(4.11) from the orbital eigenvalues, are reported solely to illustrate the importance of
correctly evaluating the da. Each of the five different environmental models has its
own da and Cg(ab) coefficients involving the O~ ion because these quantities were
derived from the model-dependent outermost anion orbitals. However, the Cg(ab),
de and Cg(CC) values are model-independent because the former were derived from
experiment and the latter calculated from free-cation wavefunctions. The OEMFS rear-
rangement energies and inter-ionic potentials expressed in atomic units are presented
in tables 12 and 13. All cation wavefunctions used are those computed for the free
cation.

Comparison of tables 10 and 11 with table 4 shows that agreement between the-
ory and experiment is significantly improved for all five environmental models on
including electron correlation. Nevertheless, the discrepancies between experiment
and the predictions of Watson, wMm, RvMw and orvMwW models are still appreciable.
Although the Watson model is the least satisfactory, it is interesting that the predic-
tions of these four methods are not that dissimilar despite the theoretical objections,
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Table 10. MgO crystal cohesion predicted with inclusion of correlation and using different
environmental models®4

Watson WM RVMW ORVMW OEMFS

e @B @ @B (& @ (& @B () (P) expt

D. 2980 2974 2992 2985 2997 2987 3002 2994 3002 3038 3038
R. 4115 4.121 4.068 4.074 4.064 4.077 4.105 4.114 4.034 3.994 3.974
B 20.9 20.7 18.9 18.7 19.3 19.1 18.2 18.4 19.1 19.9 17.5

#See note ¢ to table 2 and notes a and c to table 4.

PAll predictions derived with Ur(R) computed from (2.4) with correlation contribution
(EFS(R)) to rearrangement energy calculated using the density-functional expression (4.6)
with the best (table 8) Acorr(¢) parameters.

“The results in columns headed () are computed with O?~ dispersion damping parameters (da)
derived from orbital eigenvalues according to (4.8) and (4.11).

4The results in columns headed (P) are computed with 0%~ dispersion damping parameters
(da) derived according to (4.8) and (4.10) from decay of the large components of the orbitals.

Table 11. CaO crystal cohesion predicted with inclusion of correlation and using different
environmental models®

Watson WM RVMW ORVMW OEMFS

e @B @ B e @B (e B () (P) expt

D. 2528 2519 2521 2512 2509 2499 2533 2524 2562 2645 2644
R. 4.846 4.860 4.800 4.813 4.767 4.782 4783 4.797 4.669 4.536 4.537
B 10.2 9.65 10.6 10.5 10.9 10.7 11.2 11.0 10.4 11.7 11.3

2See notes from table 10.

discussed in §3, which can be raised against the first two methods. The orvMwW
predictions are only marginally better than those of the RvMw model, despite the
considerable extra effort needed to optimize Rw in the former approach. Indeed,
neither of these two methods has significantly improved on the predictions of the
wM model despite the absence of any cation dependence in the latter environmental
potential. It is noteworthy that for both MgO and CaQ, the predictions of the theo-
retically best calculations, those using the OEMFs model with the da given in table 9,
agree excellently with experiment. These predictions are more accurate than those of
the crystal Hartree-Fock method, as would be expected from the absence of electron
correlation in this latter method. Thus, the most recent such calculations (Dovesi et
al. 1993) predict R, and B for CaO to be 4.601 au and 12.8 x 10'® Nm~2, while the
MgO results reviewed elsewhere (Pyper 1991) were discussed in the introduction.
The agreement of the present calculations with experiment does not arise simply
as the sum of the improvement in the prediction of U (R) on replacing the Watson,
WM, RVMW or ORVMW models by the OEMFS approach plus an environmentally in-
dependent improvement produced on including electron correlation. This agreement
depends explicitly on the interplay between the improvement of the environmental
model and its consequent effect on the predicted Ugisp(R) and E™(R). Thus, the
more contracted anion 2p orbitals predicted by the OEMFs model generate ds val-
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Table 12. The OEMFS predictions for MgO

R A k  ELR) Via(R) VAA(V2R) Ew(R) Vi&a(R) Veaa(vV2R)

3.25 254 143 0.81652 0.08528 0.01728 0.70324 0.08333 0.016 23
3.5 2.00 1.29 0.64337 0.06226 0.01187 0.54110 0.06063 0.01075
3.75 1.54 1.16 0.53847 0.04661 0.00755 0.44507 0.04524 0.006 38
3.981 1.21 1.05 047742 0.03627 0.00454 0.39069 0.03510 0.003 37
4.25 090 0.937 0.43135 0.02772 0.00211 0.35104 0.026 74 0.000 96
4.5 0.74 0.843 0.40623 0.02150 0.00080 0.33027 0.02068 —0.00027
5.0 0.42 0.683 0.37220 0.01394 —0.00063 0.30375 0.01334 —0.00161
5.5 0.25 0.553 0.35360 0.00940 —0.00106 0.29061 0.00896 —0.00193

All Vo (v2R) and VEE(V/2R) < 1075 for R > 3.5; V¢ (v/2R) is 0.00007 and 0.00001 with
S8 (V2R) = —0.000 03 and —0.00001 for R = 3.0 and 3.25, respectively.

Table 13. The OEMFS predictions for CaO

R Ak  ELR) Via(R) Viaa(V2R) Ew(R) Vioa(R) Viaa(V2R)

3.5 1.8 1.07 0.94591 0.13255 0.00340  0.78458 0.12868 0.003 08
3.75 1.93 1.12 0.79420 0.08806 0.00226  0.64485 0.08496 0.001 96
4.0 2.25 1.12 0.69239 0.05866 0.00144  0.55208 0.05618 0.00119
4.25 2.18 0.97 0.60976 0.04097 0.00106 0.47663 0.039 00 0.00083
4.544 1.26 0.718 0.51993 0.03048  0.00105 0.39563 0.02889 0.000 79
4.75 091 0.63 0.47409 0.02534 0.00095 0.35618 0.02394 0.000 65
5.0 0.75 0.59 0.43816 0.01982 0.00072  0.32685 0.01863 0.000 41
5.5 0.64 0.59 0.39433 0.01237  0.00033  0.29397 0.01149 0.00001
6.0 0.56 0.58 0.36871 0.00818 0.00009  0.27661 0.00753  —0.00021

R Vico(V2R)  Vio(v2R)

3.5 0.00282 0.00250
3.75 0.00101 0.00083
4.0 0.00036 0.00026
4.25 0.00013 0.00008
4.544 0.00004 0.00002
4.75 0.00002 0.00001
5.0 0.00001 0.00001

ues appreciably larger than those derived from the Watson, wM, RVMW or ORVMW
models. For MgO, these four models produce da values of 1.295, 1.387, 1.481 and
1.442, respectively, compared with 1.958 in the 0EMFS model. This causes the latter
to produce significantly greater |Ugisp(R)| values, for example, the 0EMFS descrip-
tion predicts Ugisp(3.981) to be —60 kJ mol~! compared with —36 kJ mol™! in the
orvMwW model. This trend is accentuated for CaO for which the wM, RvMWw and
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orvMW models have da values of 1.315, 1.325 and 1.317 compared with 2.254 in
the oEMFS method; the Ugisp(4.544) of —113 kJ mol™* resulting in the latter ap-
proach being of much greater magnitude than the corresponding orRvMw result of
—59 kJ mol~!. The greater contraction of the OEMFS orbitals causes the Starkschall-
Gordon formula to predict smaller Cg(ab) dispersion coefficients involving the 0%~
ion than those produced in the Watson, Mmw, RvMwW and ORvMW methods. However,
this factor is outweighed by the larger da values in the OEMFS model which therefore
yields larger |Ugisp(R)| values.

The importance of the environmental modifications of Ugisp(R) and ES™(R) is
shown by considering, for MgO, the D, increases of 21 and 12kJ mol™! and R,
decreases of 0.05 and 0.085 au on passing from the RvMw and OrRvMW models to
the oemFs predictions of U?(R). These improvements are much less than the D,
increases of 51 and 44 kJ mol™! and R, decreases of 0.083 and 0.120 au on passing
from the RvMw and orvMw calculations of Ur(R) to those performed using the
OEMFS approach. For CaQ similarly, the D, increases of 59 and 45kJ mol~! and
R, decreases of 0.119 and 0.119 au on passing from RVvMW and ORVMW to OEMFS
calculations of U?(R) are less than half the D, increases of 146 and 121 kJ mol~!
and R, decreases of 0.246 and 0.261 au generated by passing from RvMwW and ORVMW
to the orMFs description of Uy (R).

The significance of deriving da from the decay of the orbitals using (4.10) rather
than from the eigenvalues (4.11) is shown (tables 10 and 11) by comparing the
corresponding predictions for the crystal cohesion. For the Watson, wM, RvMw and
orRvMW models, these two different methods produce rather similar values of da,
thereby generating not dissimilar predictions for D., R. and B. This might have
been expected because in all four of these environmental models, Fen)v(rl, R)) varies
as r; ! over a large part of those spatial regions in which the orbitals are appreciable.
However, for the oEMFS model, the da values of 1.154 and 0.795 predicted from (4.11)
for MgO and CaQ, respectively, are very much less than those (table 9) derived
from the orbital decays. These differences arise because Fen)v('rd, R) does not even
approximately vary as 7, ! in spatial regions where the anion orbitals are appreciable.
The overestimation of the dispersion damping using da values from (4.11) causes the
crystal cohesion to be appreciably underestimated.

(b) The role of the correlation contribution to the rearrangement energy

The importance of the R dependence of both E°™ (R) evaluated through (4.6) and
the correction factors Ao, (¢) is shown by the comparison (table 14) of calculations
differing only in the evaluation of ES™(R). The environment was described using
the oEMFS model in all these calculations, which included both the correlation con-
tributions VY™ (z,, R) to the short-range interactions as well as Uqisp (R), evaluated
using the best da values (table 9).

The results in the first row of table 14 show that R, is overestimated if ES™(R)
is taken to be independent of R. These calculations, in which EZ™(R) was taken to
be —218 kJ mol~!, as deduced by Clementi & McLean (1964), should be compared
with the best of the previous (Pyper 1986, 1994) methods which differ by using the
RVMW model and in deriving da from (4.11). The latter method predicts D., R, and
B for CaO to be 2463 kJ mol~', 4.830 au and 9.71 x 10'° Nm~2. These predictions
are only changed to 3005 kJ mol~!, 4.111 au and 17.8 x 10'® Nm~2 for MgO and
2454 kJ mol~1, 4.846 au and 9.54 x 10*° Nm~2 for CaO on replacing the ds values of
(4.11) with those of (4.10). Although the overestimations of R, in the RvMwW model
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Table 14. Comparison of MgO and CaO crystal cohesion predicted using different methods for in-
corporating the correlation contribution to the O®~ rearrangement energy into the OEMFS method
with inclusion of electron correlation®

MgO CaO

method® D. Re B De R. B

const ESO™ 3032 4.049 183 2541 4.643  9.39
Acor(C)=1 2970 4.010 19.4 2484 4587 104
F~, ile Acor(1) 3044 3.992 20.0 2561 4.562 11.0
best Acors(¢) 3038 3.994 19.9 2645 4.536 11.7
expt 3038 3.974 17.5 2644 4537 113

*See notes a and ¢ to table 4. All results calculated from (2.4) with 0?2~ dispersion-damping
parameters having values presented in table 9 and derived according to (4.8) and (4.10) from
decay of the large components of the orbitals.

PRow labelled const ES™™ has correlation contribution EZ™(R) to 0%~ rearrangement energy
taken to be independent of R and equal to the value of —218 kJ mol™! derived for free O~ ion
by extrapolation (Clementi & McLean 1964). Results in all other rows have Fi™ (R) computed
using the density-functional prescription (4.6) and (4.2) and differ only in the values used for
the correlation correction factor Acor:(¢€). In the second row, Acor:(¢) is omitted from (4.6), i.e.
taken to be unity; in the third row Acorr(¢) is taken from the free F~ ion (see table 6) and in
the fourth row the best (table 8) Acorr(¢) values.

of 0.124 and 0.293 a.u for MgO and CaO are almost halved to 0.075 and 0.106 au
(first row, table 14) on using the OEMFS model, these remaining errors show that
variation of ES™(R) with R must be considered. Although the oEMFs prediction of
D, for MgO, derived with constant ES°(R) (= —218 kJ mol '), agrees excellently
with experiment, D, for CaO is underestimated by 105 kJ mol~!. This shows that
no single constant ES™(R) can reproduce both D, values.

The importance of the R dependence of ES™(R) can be demonstrated without
accepting the arguments used to derive A.(¢) for an in-crystal O?~ ion. Thus, the
R, overestimations produced for MgO and CaO by taking ES"*(R) to be constant
are more than halved (second row, table 14) to 0.036 and 0.050 au on introducing its
R dependence through (4.6), but taking Ao, (¢) to be unity even though the result-
ing |EL™(R)| values are too small. This underestimation, deduced from the Ne and
F~ Acorr(€) (table 6), is propagated into the results for D,. The natural expectation
that using the Ao (¢) value correct for a free F~ ion would generate more realistic
predictions is confirmed by the excellent agreement (third row, table 14) between
theory and experiment for MgO, although the cohesion of CaO is still slightly un-
derestimated. These results strongly indicate that Ao, (¢) for O*~ depends on its
environment.

The excellent agreement (fourth line, table 14) between experiment and the most
sophisticated of the present calculations, namely those using the A.o, () of table 8,
depends on the significant difference between the MgO and CaO Ao, (¢) values of
1.436 and 1.987. The MgO results are very similar to those derived using the free
F~ ion Ao (¢) because this hardly differs from 1.436. The OEMFS anion electron
densities prs(r) in MgO and CaO at their respective equilibrium geometries are
very similar, that in CaO being slightly more compressed as shown by 2p orbital
mean radii and mean-square radii (table 3) smaller by 2% and 4%, respectively. This
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similarity explains why the prediction of —164 kJ mol~! for E<°"(R,) in CaO of is
only 3% greater in magnitude than that of —159 kJ mol~" in MgO if both A...,(¢)
are taken to be unity in (4.6). The much greater magnitude of the final prediction
of —326 kJ mol™! for E&™(R,) in CaO compared with that of —228 kJmol™! in
MgO arises from the significantly larger value (table 8) of Aco(¢) in CaO. Anion
correlation energies would be expected to be more environmentally sensitive than
prs(r) because the perturbation description of the former contains excitation en-
ergies. The smaller binding energy, as reflected in the orbital eigenvalue (&g, see
table 3), of an O?~ 2p electron in CaO compared with MgO suggests that the excita-
tion energies are much less in the former which would cause |E°°"(Re)] and, hence,
|E™(Re)| to be greater in CaO. Such reduced excitation energies are supported
by the significantly greater anion polarizability aa in CaO (table 8). Thus, the ap-
proximation (Vinti 1932) of introducing an average excitation energy Apg into the
standard perturbation-theory expression for a and then neglecting certain terms
involving the coordinates of two electrons (Salem 1960) yields aa as 2(r?)/(3AE).
The O%~ 2p electrons, the largest contributors to aa, have very similar values of (r?)
in MgO and CaQ, which shows that the enhancement of ap in CaO arises almost
entirely from reduction of Ag.

6. Conclusion

This paper presented the three refinements needed for a fully satisfactory descrip-
tion of a solid oxide within the fully ionic model. The cohesive properties thereby
predicted for MgO and CaO agree well with experiment. There is no evidence for
covalent contributions to the cohesion.

The first refinement was the introduction of the optimized hyperbolic secant
Madelung Fermi smoothed (oHSMFS), optimized with density Madelung Fermi
smoothed (opMmFs) and optimized with eigenvalues Madelung Fermi smoothed
(oEMFSs) models for the interaction of an anion electron with its surroundings. These
showed that the spherically symmetric part F enz,(ra, R) of this interaction, which is
constant for small r,, where the electron density of other ions is negligible, increases
rapidly and exponentially at larger r, and may become positive for r, values close
to the cation—anion separation R, corresponding to the core regions of neighbouring
cations. Although, for MgO at its equilibrium geometry (R = R.), F é?lz,(ra;R) is
everywhere negative, it is strongly positive for r, values in the vicinity of R both
for MgO at smaller R and for CaO at R = R,. This shows the inadequacy of mod-
els such as the optimized Abarenkov & Antonova (3.7) function and the optimized
Fermi function model (3.8), which can never become positive. The Watson, Watson—
Madelung (wwM), radius variable Madelung Watson (RvMw) and optimized radius
variable Madelung Watson (orRvMw) models, which are also negative everywhere,
are even less adequate because they vary as r; ! on increasing from their constant
values at small r, in contrast with exponential increases in the OHSMFS, ODMFS and
OEMFS descriptions. Des?lte a long history, models such as the Watson, wMm, RVMW
and ORVMW, in which Fen (r,;R) has the form of the potential generated by a spher-
ical shell of charge, are msufﬁmently realistic to describe accurately the cohesion of
MgO or CaO and are thus unsuitable for high-precision studies of oxides. The only
insight given from such models that F env(rd, R) is constant and negative for small
r, while increasing at larger r, is more clearly revealed by the obDMFs and OEMFS
approaches.
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The second refinement of calculations of crystal cohesion was to consider the varia-
tion with crystal geometry of the contribution of electron correlation to the oxide-ion
rearrangement energy. It was not only shown that this variation must be taken into
account if the cohesion of MgO and CaO are to be accurately described, but evidence
has also been presented which indicates that this contribution to the lattice energy
is significantly greater in magnitude for CaO than for MgO.

The third refinement was necessitated by using more realistic environmental mod-
els in which Fé?,)v(ra; R) does not have the form of the potential generated by a shell
of charge. In these more realistic models, F' 9, (ra; R) does not vary as r; ! in any spa-
tial regions where there is any appreciable probability of finding an anion electron.
It would therefore be wrong to derive from the O?~ 2p orbital eigenvalues the anion
dispersion damping parameter needed to calculate the functions damping the disper-
sive attractions involving the anions. The derivation of these damping parameters
from the decay of the O%~ 2p orbitals provides the necessary refinement.

The refinements needed for a good description of MgO and CaO are valuable be-
cause the previous methods (Pyper 1986) would also be expected to fail for ThO,
and UQ,. This failure, and its rectification using the methods described in this paper,
will be reported elsewhere (Harding et al. 1994). Since relativistic effects are impor-
tant for ions of high nuclear charge, ThO; and UO;, could only be studied because
the relativistic integrals program (rip) (Wood & Pyper 19815, ¢, 1986) was available
for computing the inter-ionic potentials both exactly and fully relativistically.

I thank both Dr J. Harding and Dr A. H. Harker of AEA Industrial Technology Harwell Labo-
ratory for useful discussions and the former for reading an early draft of this paper.
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ERRATA

Phil. Trans. R. Soc. Lond. A 320, 107 (1986)

Relativistic ab-initio calculations of the properties of ionic solids
By N.C. PYPER

Section 2c (iii), on the calculation of the functions x2°(r) damping the inter-ionic
dispersive attractions, needs three types of correction, two being of notation.

(1) In all the formulae (2.27)—(2.39), the distance R is that between the pair of
interacting ions and should thus be z,,R.

(2) Equation (2.34c) contained the two errors that Ps(z) on the right-hand side
should be Ps(x) and that the denominator in the last term should be 691200 and
not 69120, so that (2.34¢) should read

P 17 1.8 1.9
Py(z) = Ps(x) + 5155%" + z5086% T gora00L -

Equation (2.35) needs to be corrected by replacing both occurrences of exp(—dazR)
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